
Journal of Parallel and Distributed Computing 143 (2020) 167–178

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

BPS: A reliable and efficient pub/sub communicationmodel with
blockchain-enhanced paradigm inmulti-tenant edge cloud
Bobo Huang a, Rui Zhang a, Zhihui Lu a,b,∗, Yiming Zhang a, Jie Wu a,e,∗, Lu Zhan c,
Patrick C.K. Hung d

a School of Computer Science, Fudan University, Shanghai, China
b Shanghai Blockchain Engineering Research Center, Shanghai, China
c School of Economics, Fudan University, Shanghai, China
d Faculty of Business and IT, University of Ontario Institute of Technology, Canada
e Engineering Research Center of Cyber Security Auditing and Monitoring, Ministry of Education, Shanghai, China

a r t i c l e i n f o

Article history:
Received 28 February 2020
Received in revised form 4 May 2020
Accepted 13 May 2020
Available online 21 May 2020

Keywords:
Blockchain
Smart city
Pub/sub system
Edge cloud
Security

a b s t r a c t

In recent years, with the rapid development of smart city, prevalent pub/sub (publish/subscribe)
streaming systems have been increasingly employed as upstream middleware layer in multi-tenant
edge clouds, and feed large volume of data gathered from IoT devices of different tenants into
downstream systems (e.g., data analytics and warehouse). A shared tenancy model where multiple
untrusted applications or tenants utilize the same pub/sub system is generally exploited in edge cloud,
which poses crucial challenges including privacy-sensitive data/metadata access threat and critical
metadata modification by unauthorized tenants. A centralized monitoring node is invariably adopted
in existing security strategies (such as ACL, TLS), which causes the pub/sub streaming model vulnerable
to external malicious attacks and single point failure.

In this paper, inspired by outstanding features of blockchain including tamper-resistance, de-
centralization, strong consistency, and traceability, we propose BPS, a general and decentralized
Blockchain-enhanced Pub/Sub communication model for multi-tenant edge cloud, to redesign pub/sub
system internal security mechanisms. Specifically, by exploiting blockchain technology, BPS can
detect the illegal operations and behaviors from both malicious tenants and untrusted publishers
or subscribers. BPS directly leverages Merkel Hash Tree (MHT) of blockchain to verify the integrity
of critical and confidential metadata. Regarding authorization, BPS introduces smart-contract-enabled
fine-grained control over partition topic-classified messages by storing access control list (ACL) into an
append-only blockchain ledger. Additionally, an incentive mechanism is employed in BPS to reward
honest publishers and subscribers. We implement BPS prototype based on Kafka and EoS blockchain.
Our security analysis and extensive experiments demonstrate that BPS outperforms the state-of-the-art
pub/sub streaming system Kafka in security with minimal performance overhead.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In the past few decades, with the massive deployment of
IoT infrastructure in smart city, an increasing amount of data
is generated and gathered by a wide variety of IoT devices or
intelligent terminals belonging to various enterprises or organi-
zations, such as IoT sensors, mobile phones, smart cameras. Gen-
erally, large-scale distributed big data processing pipelines are

∗ Corresponding authors at: School of Computer Science, Fudan University,
Shanghai, China.

E-mail addresses: huangbb16@fudan.edu.cn (B. Huang),
zhangrui19@fudan.edu.cn (R. Zhang), lzh@fudan.edu.cn (Z. Lu),
zhangym19@fudan.edu.cn (Y. Zhang), jwu@fudan.edu.cn (J. Wu),
zhanlu@fudan.edu.cn (L. Zhan), patrick.hung@uoit.ca (P.C.K. Hung).

required over such massive IoT datasets to explore the potential
value. Due to constrained resources of general IoT devices, many
data-intensive computing tasks like pub/sub (publish/subscribe)
streaming processing have to be offloaded into the emerging
edge cloud shared by multiple tenants. Edge cloud computing
dramatically decreases transfer latency over large amounts of IoT
datasets by deploying computing and storage services at the edge
of the network, which bridges the data transmission gap between
edge devices and core cloud.

On the other hand, many cloud service providers have de-
ployed pub/sub services closer to edge devices in edge cloud cen-
ters [1,18,21,24]. Specifically, most pub/sub streaming systems
like Kafka [13,25], ZeroMQ [44], RabbitMQ [33] and Pulsar [4]
act as upstream middleware layer enabling downstream sys-
tems (e.g., Spark, Flink, Federated learning, Tensorflow) to share

https://doi.org/10.1016/j.jpdc.2020.05.005
0743-7315/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2020.05.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.05.005&domain=pdf
mailto:huangbb16@fudan.edu.cn
mailto:zhangrui19@fudan.edu.cn
mailto:lzh@fudan.edu.cn
mailto:zhangym19@fudan.edu.cn
mailto:jwu@fudan.edu.cn
mailto:zhanlu@fudan.edu.cn
mailto:patrick.hung@uoit.ca
https://doi.org/10.1016/j.jpdc.2020.05.005


168 B. Huang, R. Zhang, Z. Lu et al. / Journal of Parallel and Distributed Computing 143 (2020) 167–178

data feeds with each other via subscribing to topics of inter-
est [23]. As a typical implementation of pub/sub streaming
systems, Kafka employs topic-based and pull-enabled producer–
broker–consumer model for high throughput and high band-
width. With a standard Kafka system setup, any application
or user can produce any messages into any topics, as well as
consume data from any topics. In an edge cloud with a shared
tenancy model where multiple untrusted applications and ten-
ants employ the same Kafka cluster, the features of untrusted
multiple tenants result in crucial security challenges including
privacy-sensitive data/metadata access threat and confidential
metadata modification by unauthorized tenants in terms of au-
thentication and authorization among different tenants. In this
paper, we focus on the security of topic-based and broker-enabled
pub/sub streaming systems.

Most existing topic-based broker-enabled pub/sub models (es-
pecially like Kafka [25]) for edge cloud depend on centralized
cloud servers (e.g., ZooKeeper) to maintain and manage criti-
cal metadata and access control list (ACL). For instance, Kafka
relies on centralized ZooKeeper servers to manage load bal-
ancing of producers and consumers, registration of the bro-
ker/consumer/topic, and message consuming offset.

Despite the high performance, the centralized model under
a shared tenancy model results in inevitable security threats
including single point failure and key metadata tampering. Specif-
ically, publishing or subscribing message services provided by
edge cloud will not be available once the centralized pub/sub
models suffer from DDoS attacks. If ACL is modified by corrupted
brokers or malicious third parties, unauthorized producers owned
by untrusted tenants can produce spam messages to unautho-
rized topics owned by other honest tenants. Meanwhile, unautho-
rized consumers can consume privacy-sensitive topic messages
owned by other tenants. Thus, confidentiality, anonymity and
data integrity of honest tenants cannot be guaranteed. Besides,
untrusted cloud servers may commit misbehaviors of storing ten-
ant’s outsourced data. And the traditional broker-based pub/sub
models lack an incentive or penalty mechanism for publisher
and subscriber behaviors. The loose coupling between publish-
ers and subscribers poses further challenges to mature security
strategies. How to enable malicious behaviors detection, reliable
authorization, confidential data/metadata integrity verification in
a decentralized manner for topic-based broker-enabled pub/sub
streaming systems in the untrusted multi-tenant edge cloud are
critical challenges.

Meanwhile, as an emerging reliable and decentralized storage
technology, blockchain has gained tremendous attention from
both industry and academia. A blockchain is an immutable
append-only database, where each block with many signed trans-
actions is linked with the previous block by using a hash pointer.
All blocks on blockchain are managed and replicated in a de-
centralized manner via distributed consensus protocol across
untrusted participants. Once data packed by transactions is
appended into blockchain, almost nobody can modify it. To ac-
commodate the demand for various application scenarios, Turing-
complete smart contract has been supported in mainstream
blockchain implementations [2,11,31,40]. Due to the unique fea-
tures of decentralization, tamper-resistance, consensus proto-
col, and traceability, blockchain has been widely leveraged in
many fields (e.g., finance [31], IoT [14]) to enhance security
level of different applications [7,9,26,32,39,42,45,47], which is
called the blockchain-enhanced paradigm. For instance, Chen-
han et al. [42] employed tamper-resistance and non-repudiation
features of blockchain to address the distrust issues of big data
sharing in edges. GEM2-Tree in [45] explored authenticated range
queries over a hybrid-storage blockchain.

Inspired by blockchain-enhanced paradigm, we propose BPS, a
general blockchain-enhanced pub/sub communication model for

distrusted multi-tenant edge cloud, which redesigns the security
mechanism of topic-based and broker-based pub/sub streaming
system via closely coupling blockchain properties. We aim to
enable malicious behaviors detection, reliable authorization, con-
fidential data/metadata integrity verification with minimal per-
formance overhead in BPS. To achieve such goals, we determine
three critical design choices. First, considering huge performance
overhead brought by directly storing raw topic-classified mes-
sages from different tenants into blockchain, we exploit a hybrid
storage architecture where only key metadata (like ACL, identity,
partition offsets of consumers, reputation value, consumer group,
topic and partition information, etc.) are stored on-chain and raw
messages are still persisted to log-based store located at brokers.
Meanwhile, a hash for each raw message is maintained on-chain
and treated as the proof of the raw messages. The on-chain
hashes are employed to authenticate the messages retrieved from
off-chain log store to ensure data integrity. Second, we append
operation logs (oplogs) like message Produce and Fetch operations
into on-chain, which prevents malicious publishers or subscribers
from covering up misbehaviors by changing oplogs. Taking the
cost of committing oplogs to blockchain into consideration, we
adopt a batched-actions committing scheme to improve through-
put of oplogs committing. Third, we develop an ACL-enabled
smart contract to determine whether the requests-corresponding
publishers or subscribers are authorized to produce or consume
on specific topics. Due to the high latency of querying ACL over
smart contract, we cache hot ACL entries with an expiration time
in brokers. Additionally, an incentive mechanism is exploited to
reward honest clients and punish the malicious ones. Compared
to the start-of-the-art Kafka system, BPS achieves the expected
reliability and security with at least 0.6% loss in Produce through-
put and at least 4.5% loss in Fetch throughput under millions of
request workloads.

To the best of our knowledge, BPS is the first proposal that
provides a secure, privacy-protected and edge-cloud-oriented
broker-based pub/sub streaming system in a multi-tenant sce-
nario with blockchain-enhanced paradigm. The critical contribu-
tions of this paper are summarized as follows.

• By giving a detailed security analysis and threat model of
multi-tenant-shared pub/sub streaming model, we find cru-
cial challenges in terms of centralized authentication, autho-
rization and data integrity.
• To accommodate the demand for higher security level re-

quired by shared tenancy model, we propose a general and
decentralized blockchain-enhanced topic-based pub/sub
streaming model called BPS.
• We detect key metadata corruption in a timely manner by

exploiting an MHT-enabled metadata integrity verification.
• A smart contract-enabled fine-grained access control over

topics is utilized to protect critical metadata against be-
ing tampered by untrusted tenants. Additionally, we put
forward an incentive mechanism to encourage publishers/
subscribers to collaborate honestly with BPS.
• Based on Kafka and EoS Blockchain, we implement a proof-

of-concept prototype, providing a detailed security anal-
ysis of the expected BPS scheme, and conduct extensive
experiments.

The structure of the paper is organized as follows. In Section 2,
we investigate the related works on Pub/Sub streaming systems
and blockchain, then discuss threat model and our motivation.
Section 3 outlines the overview of BPS including design goals,
architecture, and challenges. The technical details of Blockchain
enhanced Pub/Sub system model and implementation are de-
scribed in Section 4. Section 5 gives the security analysis and
conducts extensive experiments to demonstrate the performance
of our proposal. Finally, Section 6 concludes this paper.



B. Huang, R. Zhang, Z. Lu et al. / Journal of Parallel and Distributed Computing 143 (2020) 167–178 169

Fig. 1. The architecture of generic broker-based pub/sub systems.

2. Related work & threat model

In this section, we first review the related works of security
schemes on topic-based and broker-enabled pub/sub systems.
Next, we introduce blockchain characteristics and discuss the
blockchain enhanced security paradigm. Finally, the threat model
of our work is demonstrated.

2.1. Topic-based and broker-enabled pub/sub systems

In general, pub/sub systems can be categorized into topic-
or content-based, broker-enabled or broker-less. Publishers and
subscribers are loosely coupled in the broker-based model. A
generic architecture of broker-based pub/sub systems is shown
in Fig. 1. Topic-based pub/sub data model generally associates
messages with different topics and delivers them to all inter-
ested subscribers. Particularly, in a broker-enabled pub/sub sys-
tem, the messages delivery from brokers to subscribers can be
summarized as push- (like RabbitMQ [33]) and pull-based (like
Kafka [25]). In this paper, we mainly focus on topic-based and
broker-enabled pub/sub systems with a pull-based model.

2.1.1. Shared pub/sub model in multi-tenant edge cloud
With the rapid growth of IoT and edge cloud computing, in-

creasingly massive scale of data produced by various edge devices
from different tenants needs to be offloaded into shared pub/sub
systems in edge cloud owned by service providers. LinkedIn, for
example, reports that nearly two Petabytes of data every week
needs to be processed by pub/sub systems [24]. In the shared
pub/sub model in multi-tenant edge cloud, the middle brokers
cluster is leveraged to (1) handle Produce requests from upstream
IoT edge nodes (as publishers) owned by different untrusted ten-
ants, (2) persist messages data in partitioned logs and maintain
critical metadata, (3) and response to Fetch requests from the
downstream untrusted streaming processing services (as sub-
scribers) employed by corresponding tenants. In the untrusted
multi-tenant environment, we assume that tenants, upstream
publishers, downstream subscribers, and broker cloud servers are
unreliable and dishonest. Therefore, effective security and privacy
policies in the shared multi-tenant pub/sub model are urgently
demanded. The major security requirements are as follows:

• Misbehaviors Monitoring: Need to ensure that any illegal
or malicious operations from unauthorized tenants, cor-
rupted broker servers, and dishonest publishers or sub-
scribers can be traced and detected.
• Data Integrity: Confidential metadata and critical portioned

messages should be protected from being illegally tampered
by malicious tenants or corrupted brokers. Moreover, the
integrity of the data/metadata can be verified in an efficient
manner.

• Multi-tenant Friendly Authorization: Message data isola-
tion between different tenants is achieved by topic-enabled
grouping. That is to say, a publisher owned by one specific
tenant can only produce messages of the assigned topics,
while a subscriber can only subscribe to assigned topics.
The topics are only visible to authorized publishers and
subscribers owned by untrusted tenants. A strict and fine-
grained access control over topic-classified messages should
be performed in a multi-tenant friendly manner.

Existing research has focused on resource orchestration op-
timization for multi-tenant edge cloud to improve resource uti-
lization and performance [8,27]. So far, little attention has been
paid to the shared (pub/sub) service security issues introduced by
multi-tenant edge cloud.

2.1.2. Security for pub/sub systems
A few previous works focused on enhancing the security of

content-based broker-less pub/sub systems [3,29,30,36–38]. For
instance, Anusree et al. [3] employed Elliptic Curve identity-based
signcryption [16] to provide unforgeability, confidentiality, and
forward secrecy required by broker-less pub/sub service. The
proposal in [38] leveraged hierarchical identity-based encryption
to realize security mechanisms for broker-less pub/sub system.
Muhammad et al. [36,37] proposed the pairing-based cryptog-
raphy mechanism and fine-grained key management to guaran-
tee authentication and confidentiality of a broker-less content-
based pub/sub system, which requires a trusted centralized mas-
ter server to maintain privacy-sensitive keys.

Additionally, there are other prior research focusing on au-
thentication and privacy protection in broker-enabled or cloud-
based pub/sub services [12,22,43]. Specifically, the scheme in [22]
realized confidentiality and reliable access control for pub/sub
systems with untrusted brokers through combining attribute-
based encryption with searchable encryption. Regarding privacy
preserving in cloud platforms, an attributed-keyword based
pub/sub scheme called AKPS in [43] was proposed to preserve
published messages against unauthorized cloud servers. Besides,
a shell game algorithm-based probabilistic forwarding in Anon-
PubSub [12] was employed to guarantee the anonymity of par-
ticipants in pub/sub systems.

Generally, traditional security mechanisms for pub/sub model
reply on centralized master nodes to provide authentication and
confidentiality, which is vulnerable to single point failure. Fur-
thermore, past pub/sub systems lack sufficient considerations for
the isolation security issues caused by multi-tenant contention
in shared edge cloud. To mitigate the above security bottlenecks
and accommodate the demand for security in shared edge cloud,
we implement a multi-tenant friendly pub/sub model in a com-
pletely decentralized manner. Table 1 summarizes the significant
differences between BPS and typical pub/sub systems.

2.2. Blockchain technology

With the rapid evolution of blockchain [2,11,31,40,48], more
efficient consensus algorithms are employed, which result in
lower consensus latency and higher transaction throughput, as
shown in Table 2. Meanwhile, many research efforts [14,17,19,20]
are dedicated to optimizing the internal mechanism of blockchain
systems. Considering the demand for high performance, we em-
ploy the emerging EoS [11] with permissioned mode as the un-
derlying blockchain of BPS. The generic blockchain framework is
shown in Fig. 2.



170 B. Huang, R. Zhang, Z. Lu et al. / Journal of Parallel and Distributed Computing 143 (2020) 167–178

Table 1
Comparison with previous pub/sub systems.
Property Broker-less & Content-based pub/sub Broker-enabled & Topic-based pub/sub

Tariq
[37]

Anusree
[3]

Shitole
[34]

AnonPubSub
[12]

Ion [22] Lv [28] AKPS
[43]

SPS
[46]

Kafka
[25]

BPS

Confidentiality � � � � � � � � � �
Anonymity ✗ ✗ ✗ � � � � � � �
Authorization � � � � � � � � � �
Performance � � � ✗ ✗ ✗ � ✗ � �
Integrity verification � � � � ✗ � ✗ � ✗ �
Multi-tenant isolation ✗ ✗ ✗ ✗ ✗ ✗ � ✗ � �
Tamper-resistance ✗ ✗ ✗ ✗ ✗ � ✗ � ✗ �
Decentralized security ✗ ✗ ✗ ✗ ✗ � ✗ � ✗ �

Fig. 2. The generic architecture of blockchain platform.

Table 2
Comparison of typical blockchain systems.
Platform Block interval Consensus TPS

Bitcoin 10 min PoW [31] About 7
Ethereum 10 to 20 s PoS [40] <100
Fabric 3 to 6 s PBFT [2] >1000
EoS 0.5 s DPoS [11] million

2.2.1. Blockchain enhanced paradigm
Due to the security features and programmability described

above, blockchain has aroused massive attention in academic
and industrial fields [6,7,10,15,26,41,42]. BlockchainDB [15] pro-
posed a database layer over blockchains by integrating clas-
sical data management and standard query interfaces, which
improves the performance and scalability of blockchain-enabled
data sharing. Certchain in [7] leveraged decentralized blockchain
to enable public and efficient certificate audits for TLS con-
nections, which can eliminate the safety bottlenecks induced
by traditional centralized revoked certificates checking schemes.
CrowdBC in [26] realized a blockchain-enabled decentralized
crowdsourcing framework to replace the existing centralized
trust-based model, which protects users’ privacy with low trans-
action fees.

Motivated by the blockchain-enhanced paradigm, we mainly
explore how to employ decentralized blockchain to mitigate the
security bottlenecks discussed in Section 2.1.1.

2.2.2. Characteristics on blockchain for BPS
A typical blockchain has the following powerful characteristics

to enable higher security level for BPS:
Decentralization: Blockchain employs a distributed consensus
protocol to guarantee the consistency of on-chain data across
all participants, instead of relying on trusted third parties. Such
decentralized property of blockchain can naturally fight against
attacks like DoS. BPS also leverages such a decentralization model
to replace the traditional centralized pub/sub model.

Tamper-Resistance: All transactions carrying data are recorded
blockchain ledger. Once data is appended to blockchain, almost
nobody can modify or tamper with it. A secure and reliable on-
chain storage for key data/metadata in BPS is ensured by this
feature.
Smart Contract: Smart contract is a trusted Turing-complete
program running atop of blockchain. The consensus protocol of
blockchain provides execution integrity for smart contracts. In
BPS, smart contracts for ACL, topics, and other key metadata are
developed to ensure authenticity.
Anonymity: A few inner mechanisms are proposed to ensure the
anonymity of on-chain membership transactions [5,14,35]. Due
to these mechanisms, the identity privacy of blockchain users can
be preserved and avoid being leaked. BPS employs this feature to
guarantee the anonymity of producers’ and consumers’ identities.
Merkel Hash Tree: Blockchain constructs Merkle Hash Tree
(MHT) for every block by pairing and hashing the transactions un-
til one single hash (called Merkle Root) remains. So, the integrity
of BPS metadata/data can be verified through on-chain MHT.

2.3. Threat model

In multi-tenant edge cloud, an adversary (e.g., a malicious
publisher, subscriber, or tenant) generally attempts to attack
a generic broker-based pub/sub system for three goals: (1) to
insert, delete, or tamper with the topic-related ACL operations
for making clients’ Produce or Fetch requests validation failed;
(2) to tamper with the partition offsets of consumers by attacking
centralized master nodes such as Zookeeper servers; (3) to eaves-
drop, forge and tamper with data messages belonging to honest
tenants for compromising data integrity without being detected.
Additionally, we make several general cryptographic assump-
tions. More specifically, an attacker cannot control more than 51%
participate nodes under the blockchain-enhanced paradigm while
signatures cannot be forged without corresponding private keys.

3. Overview

There are three kinds of critical entities in our BPS system
over multi-tenant edge cloud: producer, consumer and broker,
as shown in Fig. 3. A producer belonging to one specific ten-
ant is the upstream entity who intends to establish connections
with brokers and publish messages over tenants’ corresponding
topics into partitions in brokers. A consumer owned by one
specific tenant can belong to a specific consumer group while
acting as the downstream entity required to handshake with
all brokers, subscribe to tenant-corresponding topics, and pull
authorized messages from brokers. Generally, one tenant can
have multiple producers and consumers corresponding to specific
topics, and can pay the service provider for using computing
and storage resources on brokers. Multi-tenancy is enabled by
specifying which topics each tenant can produce or consume. Bro-
kers are shared among various tenants while treated as messages



B. Huang, R. Zhang, Z. Lu et al. / Journal of Parallel and Distributed Computing 143 (2020) 167–178 171

...

...

...

...

Fig. 3. The overview of BPS architecture.

forwarder between producers and consumers. Brokers handle
the publish-related requests with specific topics from producers
and check whether the producers have write permission for the
topics. Meanwhile, brokers handle with the subscribe-related re-
quests from consumers and determining whether the consumers
have read permission for the specific topics. Instead of traditional
centralized schemes, BPS maintains the blockchain on all broker
nodes, and manages critical metadata (including ACL, topics, par-
titions, partition offsets and membership) on blockchain-bound
brokers in a decentralized fashion. To support transparent audit,
we store all privacy-sensitive operations over topics into on-
chain. Specifically, by querying the blockchain, a manager of
the edge cloud can detect whether there are illegal data ac-
cess, malicious operations and misbehaviors from corrupted bro-
kers or malicious publishers and subscribers. It is worth noting
that the blockchain of BPS works in permissioned mode, which
means only authorized nodes can participate in key metadata
management.

3.1. Design goals

In order to achieve a safe and efficient pub/sub streaming ser-
vice in a shared tenancy model, we need to determine a trade-off
between security, reliability and high performance. That is to say
that, we must ensure reliable confidentiality, anonymity, authen-
tication, and authorization across multiple tenants, while mini-
mizing performance overhead to provide relatively high message
throughput and low handling latency. The specific goals are as
follows:

• Data integrity. The integrity of messages and key metadata
should be ensured by the necessary verifications and audits.
• High query efficiency. All operations (like register, query,

publish or subscribe) on a specific topic can be tracked and
audited without having to traverse the entire blockchain.
• Intrusion tolerance. Even if a broker crashes due to a mali-

cious attack (such as DoS), publishers and subscribers served
by this broker can be taken over by other brokers, and the
metadata or messages partitions stored on the broker have
reliable copies on other brokers.

3.2. BPS architecture: Blockchain-enhanced pub/sub model

In this paper, we design a blockchain-enhanced topic-based
pub/sub streaming system which consists of three primary com-
ponents: broker, producer, and consumer. In a multi-tenant shared
edge cloud for smart cities, producer usually represents upstream
edge applications located at edge nodes/devices (such as smart
medical devices, smart shared bicycles, and smart homes) owned
by untrusted tenants. Large amounts of IoT datasets are collected

or generated by producers, which leads to the need for further
distributed big data processing pipelines for tenants (also called
data owners). Consumer corresponds to downstream streaming
processing system (like Spark, Tensorflow) employed by tenants
to data-intensive mining and inference computation. As the core
component of BPS, broker manages the message data from up-
stream in the form of topics, while passively forwarding the
topic-classified messages to the corresponding downstream con-
sumers employed by tenants. In other words, producers publish
topic-specified messages to brokers in a push-based manner (Pro-
duce) while consumers subscribe assigned topics and consume
messages in a pull-based style (Fetch). Message data isolation
between various tenants is achieved through topic-based group-
ing and blockchain-enabled fine-grained access control. This pa-
per focuses on the design and descriptions of the core broker
component. The overview of BPS architecture is exhibited in
Fig. 3.

All broker nodes in BPS build up a blockchain network with
a permissioned mode. A broker is also a core process running on
the BPS server which is composed of broker manager layer, store
layer, and transport layer. In broker manager layer, we propose
blockchain-enhanced fine-grain access control to authorize the
requests received from producers and consumers. To replay and
trace the history topic operations, we define a new data structure
called TopicOper to represent topic operations, which is recorded
in blockchain in the form of Merkle Hash Tree (MHT). In store
layer, trusted storage and computing services are provided due
to the tamper-resistance and consensus properties of blockchain.
And privacy-sensitive data can be stored on-chain. In transport
layer, various messages from publishers and subscribers are re-
ceived, deserialized, security checked and forwarded to broker
manager layer for handling. This paper focuses on the broker
component. We will give a detailed description to these three
layers of broker.

Transport Layer. This layer consists of two core components:
Acceptor and Net Server. The acceptor is mainly responsible for
listening to the channel connection request and distributing it to
the Processor in the Net Server in a round-robin manner. A Net
Server contains multiple processors, each processor corresponds
to a response queue, and all processors share the same global
request queue. A processor is generally used to deserialize the
requests and push them to the request queue, while serializing
the responses and forward them to the remote client. Addition-
ally, encryption and decryption of in-flight data using SSL/TLS is
also performed at the transport layer.

Store Layer. As a trusted storage scheme, blockchain can gen-
erally store text, documents and images. However, considering
that messages in BPS are usually large, directly storing raw data to
the blockchain limits the scalability of BPS brokers. To tackle this
problem, we adopt a hybrid storage architecture, in which only



172 B. Huang, R. Zhang, Z. Lu et al. / Journal of Parallel and Distributed Computing 143 (2020) 167–178

Fig. 4. The process of appending messages to partition.

small security-sensitive metadata like ACL, identity information
and topic partitions metadata are appended to Blockchain and
data messages are persisted to corresponding partitions in Log
Store (as shown in Fig. 4). Meanwhile, every topic message has a
corresponding cryptographic hash which is maintained on-chain
as witness of the raw object.

Broker Manager Layer. Broker mgr layer is mainly composed
of Request Handler, replicas manager (Replicas Mgr), persistence
manager (Log Mgr), admin manager (Admin Mgr), ACL man-
ager (ACL Mgr) and authentication manager (Auth Mgr). Through
invoking corresponding smart contract programs executed on
blockchain, admin manager primarily maintains the operations
over core meta-data such as TopicOper, topic, partition, replicas,
consumer offsets and membership. ACL Mgr is primarily respon-
sible for registration, update and validation of the permissions
of producers and consumers on specific topics. Each ACL entry is
defined in the classical format of ‘‘Principal P is [Allowed/Denied]
Operation O From Host H on any Resource R matching Resour-
cePattern RP’’. Auth Mgr is used to manage the on-chain identity
information of the producer, consumer and broker. Replicas Mgr
which consists of a set of replicas is leveraged to manage all
partitions on the local broker and replicas synchronization with
other brokers. More specifically, when authorized messages need
to be persisted to Log Store, Replicas Mgr gets the target partition
instance based on the input partitionId and append messages to
partition header in the form of logs. Log Mgr is mainly responsible
for creating, retrieving, and cleaning up logs.

The request handler can receive and handle requests from the
request queue of the transport layer and push the processing re-
sult into response queue. To be specific, when the request handler
receives an operation request from one authenticated producer or
consumer, it should determine whether or not the particular pro-
ducer or consumer is allowed to write or read on specific topics
by utilizing ACL Mgr to check on-chain ACL. If the operation over
topic is invalid, a topic operation log with description such as op-
erator name, topic name, operation type, and valid status is gen-
erated and recorded into blockchain by Admin Mgr. Otherwise, the
authorized operation over some topics is performed and a gener-
ated valid topic operation is stored on-chain. For example, when
a Fetch request from specific consumer is received, the request
handler first employs on-chain ACL cached in ACL Mgr to check
whether the requested topic partitions exist and whether the
consumer has the Describe permission for the specified topic. If
failed, returns the error response of unknown topic or partition to
client. Otherwise, request handler exploits ACL manager to check
whether the consumer has read access to the topic. For unau-
thorized topics, TOPIC-_AUTHORIZATION_FAILED response will be
delivered to the consumer. Eventually, the request handler will
employ Replicas Mgr to retrieve messages on specific topic parti-
tions and return them. It should be noted that no matter whether
the operation request on specified topics is successful or failed,

a corresponding TopicOper instance will be generated and ap-
pended to the blockchain. The blockchain-enabled authorization
process of Produce requests from producers is similar to that of
Fetch requests from consumers.
Algorithm 1 Blockchain-enabled Produce Request Handler on BPS
Broker
Input: msgList, producerID
Output: True or False
1: if CheckInvalid(producerID) then
2: return False
3: end if
4: writeMsgList ← null
5: aclTopics← CheckAclInChain(producerID,WRITE)
6: for each msg ∈ msgList do
7: if msg.topic ∈ aclTopics then
8: writeMsgList.Append(msg)
9: else

10: ReduceReputation(producerID)
11: reputation← GetReputation(producerID)
12: if reputation<MIN_REPUATION then
13: AddToBlackList(producerID)
14: end if
15: return False
16: end if
17: end for
18: for each msg ∈ writeMsgList. do
19: WriteRawMsgToLogStore(msg)
20: WriteMetadataToChain(msg.topicPartition,
21: msg.offset,msg.sizeInBytes)
22: adminMgr.recordTopicOper(msg.topic,
23: producerID,WRITE)
24: end for
25: AddReputation(producerID)
26: return True

4. BPS design and implementation

In this section, we demonstrate a detailed description for
malicious behavior detection, data integrity verification, block-
chain-enhanced access control, incentive mechanism, and
batched-actions committing employed by BPS. To achieve the ex-
pected security goals with minimal performance overhead men-
tioned in Section 3, we implement a prototype system BPS based
on Kafka and EoS blockchain. Taking publishing topic-classified
messages by producers as an example, blockchain-enabled Pro-
duce request handler is leveraged by BPS broker, as shown in
Fig. 5. Concretely, given the message list and producer ID pro-
vided by producers, after producer ID is authenticated, BPS broker
will check all Write-authorized topics via on-chain ACL via Al-
gorithm 4. Further, Admin Mgr in BPS broker filters out all valid
messages according to correspondingWrite-authorized topics. For
each valid message: (1) Log Mgr writes the raw message to Log
Store; (2) Admin Mgr writes message metadata to on-chain store
via Algorithm 3; (3) Admin Mgr records the corresponding topic
operation logs to blockchain through Algorithm 2.

To be specific, as shown in Algorithm 1, the validation of
the producer is first checked at line 1. After that, a topic list is
obtained from blockchain by calling Algorithm 4 at line 5. Then
the group of messages to be produced is iterated, only messages
whose topic with write permission will be produced. If a producer
tries to produce a message whose topic without write permission,
it will be rejected and incentive mechanism is called at line 10.
The reputation of the producer will be reduced and it will be
added to black list if the reputation is below a threshold, so
this producer will no longer pass authorization at line 1. After
messages with correct permissions are filtered, they are ready to



B. Huang, R. Zhang, Z. Lu et al. / Journal of Parallel and Distributed Computing 143 (2020) 167–178 173

Fig. 5. The overall relationship between Algo. 1, 2, 3, and 4 employed by BPS.

be produced and written to local log files. After being written,
the key metadata information is saved to blockchain by calling
Algorithm 3 in order to achieve data integrity verification. More-
over, the operation logs of producers about topics are saved to the
blockchain by calling Algorithm 2 at line 22, so we can achieve
malicious behavior detection by analyzing the operation logs.

Algorithm 2 TopicOper Generation

Input: operatorID, role, topicID, operaName, timestamp
Output: TopicOper
1: if notexist(operatorID, role, topicID, operaName, timestamp

then
2: TopicOper← WriteToChain(operatorID,

3: role, topicID, operaName, timestamp)
4: return TopicOper
5: else
6: operaLog← Find(topicID)
7: lastOperh← operaLog
8: return TopicOper
9: end if

4.1. Malicious behavior detection

Considering malicious operations or misbehaviors monitoring,
we propose an effective on-chain data structure TopicOper in
Fig. 6 to store all topic operation logs of BPS into blockchain.
The detailed fields and descriptions of TopicOper structure are
shown in Table 3. When BPS broker handles the Produce or
Fetch requests, Algorithm 2 is used to generate and record the
corresponding operation logs. The field lastOpHeight refers to
the block height of the last TopicOper. So, we can get the last
operation logs without traveling over the blockchain again. A

Fig. 6. Traceable topic operation in blockchain.

Table 3
TopicOper .
Field Expression

operatorID The ID of the client, i.e. operator
role producer or consumer
topicID the ID of the topic operated
operaName WRITE, READ, DISCRIBE, DELETE
lastOpHeight the block height of

the TopicOper ’s last detect operation
timestamp The timestamp at the operator happened

super administrator for BPS in the edge cloud can query all on-
chain operation logs over the given topic by utilizing Algorithm 2
and then analyze the TopicOper logs to detect malicious behaviors
taken by untrusted tenants. Thanks to the field lastOpHeight, we
can efficiently obtain the entire historical topic operation logs
without traversing the entire blockchain.

4.2. Data integrity verification

BPS employs a hybrid storage scheme where critical meta-
data is stored on-chain and raw messages data is persisted to
log-based store. To ensure reliable integrity, Merkle Hash Trees
(MHTs) on blockchain are employed to verify on-chain metadata
while on-chain hashes are leveraged to authenticate off-chain
data. More specifically, MHT is constructed through computation
results on the basis of a one-way cryptographic hash operation
(e.g., SHA256). An MHT in blockchain is constructed in a block
by pairing transactions, then hashing until one single hash value
(called Merkle Root) remains. In the binary tree of MHT, every
leaf node containing one transaction can be verified via the cor-
responding path. By comparing the Merkle Root in each block, we
can know whether the key metadata in the leaf nodes of MHT
are tampered or not. In terms of off-chain data, when storing the
raw messages to off-chain log store, a cryptographic hash of each
message is generated by BPS and kept in blockchain, as shown in
Algorithm 3 and line 20 of Algorithm 1. To verify the integrity
of off-chain data, for each message in off-chain raw messages,
we first get the corresponding on-chain hash and then use it to
authenticate the message.

4.3. Blockchain-enhanced access control

When one BPS broker receives requests from producers or
consumers, necessary authorizations are performed for topic-
based access control. Original Kafka enforces access control which
reply on ACL rules stored in centralized Zookeeper servers. Con-
sidering the security and immutability of blockchain, we record
topic-related access control entries in the blockchain. Records are
saved in tables where each record mainly consists of producerID,
topic , operation fields. Take the message producing request from
the producer as an example, as Algorithm 1, It needs to get access



174 B. Huang, R. Zhang, Z. Lu et al. / Journal of Parallel and Distributed Computing 143 (2020) 167–178

Algorithm 3 WriteMetadataToChain procedure on BPS Broker

Input: topicPartition, offset, bytes
Output: True or False
1: procedure WriteMetadataToChain

(topicPartition, offset, bytes)
2: metadataTable← GetTable()
3: pKey← metadataTable.AvailablePrimaryKey();
4: if metadataTable.Insert(pKey, topicPartition, offset, bytes)

then
5: return True
6: else
7: return False
8: end if
9: end procedure

control of topic before producing message. An authorize request
AuthRequest = ⟨producerID,WRITE⟩ was sent to blockchain dur-
ing the process. By calling Algorithm 4, the blockchain executes
smart contract-enabled find function. In the smart contract, an
index on the producerID is built and used to query the matching
records according to producerID. After that, topics are filtered
out according to operationType and a set of topics will be re-
turned. Additionally, taking the high latency of querying ACL over
smart contract into consideration, we cache hot ACL entries with
expiration time in brokers.

4.4. Incentive mechanism

In order to enhance the security of BPS Broker as much as
possible, we use EoS tokens to implement a heuristic incentive
mechanism based on Routing to reward honest clients and punish
malicious clients. Specifically, we create a blockchain account
for each producer or consumer, and use EoS tokens to define a
client’s reputation which represents the credibility of a client.
When clients are initialized, the BPS Broker assigns them a default
reputation value. During the verification stage of request handler
in BPS, when a producer attempts to write messages to unau-
thorized topics or when a consumer attempts to read messages
from unauthorized topics, the corresponding reputation will be
decreased. When the client’s reputation is below a pre-defined
threshold, it will be pushed into a blacklist by BPS broker. And
when an honest client is processed successfully by the request
handler of BPS broker, its reputation will increase appropriately.
The details of such incentive mechanism are shown in Algorithm
1.

Algorithm 4 Blockchain Enhanced Access Control

Input: producerID, operation
Output: topicList
1: procedure CheckAclInChain(producerID, operation)
2: indexTable← IndexBy(byproducerid)
3: records← indexTable.Find(producerID)
4: for each record ∈ records do
5: if record.write is True then
6: topicList.Append(record.topic)
7: end if
8: end for
9: return topicList

10: end procedure

Fig. 7. The job completion time and throughput of recording TopicOper on-chain
with different batch size.

4.5. Batched-actions committing

As blockchains ensure consistency and tamper resistance
through a compute-intensive consensus protocol, the perfor-
mance of blockchain systems is generally much worse than that
of traditional database systems. In other words, the consensus
algorithm is the main performance bottleneck of the blockchain
system (EoS in our case). If each TopicOper is treated and stored as
a transaction, the TPS (transactions per second) throughput of all
existing blockchain is far from the requirement of high through-
put in BPS. This is because the huge amounts of data produced
by smart cities in a multi-tenant environment will generate large-
scale concurrent requests. Such design choice makes the on-chain
persistence of TopicOper dominate the steaming workflow of BPS,
which induced performance overhead cannot be tolerated.

To tackle the above issue and adapt blockchain to BPS, we
propose an asynchronous batched-actions committing scheme.
Specifically, multiple TopicOper actions can be merged and stored
into one transaction. Only when the number of cached Topi-
cOper reaches a specified batch size or exceeds a predefined
time window, a set of TopicOper instances will be committed
to a transaction asynchronously through invoking corresponding
smart contract program. The batch-based policy can dramati-
cally improve TopicOper persistence throughput and utilization
of blockchain storage resources in BPS. To determine an optimal
batch size, we implement a smart contract that commits Topi-
cOper actions in batches on the EoS Blockchain, and conduct the
experiment to explore the relationship between batch size and
TopicOper persistent throughput. The experimental results are
shown in Fig. 7, and we found that TopicOper ’s insert throughput
increases linearly with increasing batch size. The throughput
reaches its maximumwhen the batch size is 512. Therefore, in our
case, BPS selects 512 as default batch size for TopicOper commit
stage.

5. Evaluation

5.1. Security analysis

We present security profiling and discuss the effectiveness
of various security mechanisms proposed by BPS. To give a
more vivid explanation for the upcoming security proofs, we use
two edge cloud-enabled smart city applications (smart medical
and smart home IoT applications) as a scenario. The tenants of
smart medical and home IoT applications are hospital and IoT
device provider respectively. Specifically, for smart medical IoT
applications, smart blood pressure meter and heart rate moni-
tor are widely used to collect the patients’ blood pressure and
heart rate for behaviors and health monitoring. By publishing
patients’ health data to edge cloud, the required preprocessing
and interference are performed to predict and assess the pa-
tients’ health states. Note that these personal health datasets



B. Huang, R. Zhang, Z. Lu et al. / Journal of Parallel and Distributed Computing 143 (2020) 167–178 175

are significantly privacy-sensitive. For smart home IoT applica-
tions, smart air pollution monitors are generally used to collect
indoor temperature, humidity, and pollution situation data. By
publishing the indoor situation data to BPS brokers in edge cloud,
the expected data mining tasks are performed to adjust the
air conditioner/humidifier and assess the pollution index. These
indoor situation data has relatively lower privacy requirements
than the patients’ health data. These two smart IoT applications
share the same BPS services in edge cloud with different assigned
topics. Meanwhile, the downstream Spark clusters employed by
the above IoT apps fetch IoT data messages stream from BPS
clusters for data mining and inference. We assume that the entire
edge environment is untrusted.

Theorem 1. In BPS, the topic-related operations such as Produce and
Fetch messages can be traced efficiently to detect misbehaviors and
illegal actions taken by malicious publishers or subscribers owned by
untrusted tenants.

Proof. We can observe that, for a given topic operation, we
can efficiently get a full history of topic operation logs without
traversing the entire blockchain. This is due to the trusted data
structure TopicOper which realizes a topic operation chain for all
clients whose topic operations are completely recorded on-chain.
All queries and audits on TopicOpers are implemented based on
trusted smart contract programs whose execution integrity is en-
sured by the blockchain consensus protocol. Furthermore, thanks
to the tamper-resistant nature of blockchain, all TopicOpers can-
not be modified by any unauthorized party. Thus, the query of
any operations over topics can be fed back in an efficient and
reliable manner. For instance, when a malicious tenant of smart
home attempts to illegally publish junk messages to the assigned
topics of the smart medical app and is refused by BPS brokers
in edge cloud, the corresponding TopicOper has been generated
and appended to the tamper-resistant blockchain. The attacking
behavior of the smart home tenant will be audited and detected
offline by the super administrator of edge cloud.

Theorem 2. By decentralized design and TopicOper based audit, BPS
can tolerate broker failure brought by DoS and other failures from
traditional defense mechanisms realized in brokers under the threat
model in Section 2.3.

Proof. On the basis of characteristics of BPS described in Sec-
tion 4.1, all topic-related operations must be stored in blockchain
to be audited for anomaly behavior detection. Therefore, even if
an attacker captures a BPS broker, all on-chain topic operations
can be verified publicly by edge cloud super administrators and
other BPS brokers. Thereby, the corrupted brokers will be de-
tected quickly. On the other hand, in practice, BPS is deployed
resilient edge cloud infrastructure, which makes it extremely
difficult for an attacker to hinder BPS brokers from recording
topic operations on-chain. Nevertheless, DoS attacks cannot be
defended absolutely in an untrusted environment. We assume
that a forceful attacker can interrupt accessing to BPS brokers
via DoSing it. As all on-chain metadata (like ACLs and identity
information of smart home and smart medical IoT applications) in
BPS is in parallel with a decentralized fashion and each topic par-
tition has multiple host-separated replicas, the brokers attacked
by DoSing can be taken over by the others. But in traditional
centralized pub/sub model like Kafka, all critical metadata is kept
in centralized servers like Zookeeper. Once the centralized master
servers are under attack, the result will be more terrible. Thus,
compared with traditional centralized pub/sub models, BPS can
ensure sustainable service under inevitable DoS attacks.

Theorem 3. BPS can resist unauthorized topic operations and pro-
vide efficient data integrity verification with hybrid storage scheme.

Proof. In terms of reliable authorization, BPS enforces fine-
grained access control smart contracts over on-chain ACL (as
described in Section 4.3), which means that ACL entries can be
hardly tampered by inner attackers. Additionally, when it comes
to integrity, security-sensitive on-chain metadata can be verified
through Merkle Root in block header while large off-chain mes-
sages can be verified via corresponding on-chain hashes. Thus, we
can detect data corruption through effective integrity verification
(as introduced in Section 4.2) over the hybrid storage scheme.
Particularly, we take the smart city IoT applications mentioned
above as an example. For the blockchain-enabled hybrid stor-
age scheme employed by BPS, patients’ health data (such as
blood pressure, heart rate) collected by smart medical devices,
as well as indoor situation collected by smart home IoT de-
vices (such as temperature, humidity, and pollution status) are
stored into off-chain BPS broker Log Store, and the corresponding
hashes are appended to the on-chain ledger in a tamper-proof
and decentralized manner. Additionally, ACL and the mapping
relationship between smart home/medical IoT apps and the as-
signed topics are stored in the blockchain. Naturally, blockchain-
enhanced fine-grained access control and MHT-enabled integrity
verification can provide reliable and secure BPS pub/sub services
for the privacy-sensitive data/metadata generated by smart city
applications.

Therefore, we believe that BPS can provide reliable and se-
cure broker-based pub/sub streaming services in untrusted multi-
tenant edge cloud.

5.2. Experiment setup

Hardware configuration: We conducted the performance ex-
periment between BPS and plain Kafka on two servers. The DRAM
size in each server is 128 GB with type of DDR4, whose speed is
2400 MHz. Each server is equipped with two E5-2687Wv4 CPU
processors with 12 CPU cores and 3.00 GHz frequency. The L1
cache of each CPU core is 768 kB while the L2 cache is 3072 kB.
12 cores on one CPU processor share the same 30 MB L3 cache.

For performance comparison between BPS and Kafka, we con-
centrate on three import performance metrics including auth
time, job completion time (JCT), and throughput (Tput). Auth time
is defined as the time to verify related operation permissions.
Job completion time is defined as how long it takes to complete
Produce or Fetch requests when the specified number of messages
is given. Throughput is defined as the number of messages pro-
duced or consumed per second. All experimental results are the
average of five runs. In each run, produce and consume operations
are executed under increasing message counts (2 million to 10
million) to compare the performance differences between BPS
and Kafka.

In the next sections, we give a detailed comparison and anal-
ysis of the above-mentioned metrics of BPS and Kafka.

5.3. Auth time analysis

Fig. 8 shows the distribution of auth time when BPS/Kafka
handles Produce or Fetch operations. We can find that with in-
creasing scale of topic messages, the growth rate of auth time
using BPS is gradually flattening. In the line chart in Fig. 8,
the auth time gap between BPS and Kafka represents the au-
thentication overhead introduced by on-chain fine-grained ACL
and incentive mechanism in BPS. Thanks to the optimization
of caching hot ACL entries with an expiration time in brokers,
the authentication overhead gap gradually shrinks convergently



176 B. Huang, R. Zhang, Z. Lu et al. / Journal of Parallel and Distributed Computing 143 (2020) 167–178

Fig. 8. Comparison of auth time between BPS and Kafka with increasing message
number.

Fig. 9. Comparison of producer’s job completion time between BPS and Kafka
with increasing message number.

Fig. 10. Comparison of consumer’s job completion time between BPS and Kafka
with increasing message number.

with increasing message scale. The adoption of batched-actions
committing is another decisive factor which increases the gains
made each time the blockchain is queried or appended. Compared
with Kafka’s auth time growth of up to nearly 50% with increasing
message scale, BPS can maintain a relatively stable growth rate of
only about 10%. When the message number reaches 10 million,
the auth time using BPS is only up to 10% more than Kafka.

The above data analysis shows that our BPS can ensure reliable
authentication and verification while keeping a low and stable
overhead under large-scale message processing. It is worth noting
that it is not possible that BPS will exceed Kafka. Because of the
introduction of blockchain verification operations and incentive
mechanisms, the additional overhead is inevitable. But the good
news is that as the message data increases, the gap between the
two is decreasing and converging.

5.4. Job completion time analysis

As shown in Figs. 9 and 10, the comparison of both the pro-
ducer’s and the consumer’s job completion time between BPS and
Kafka is also illustrated Fetch operation from the consumer in
Fig. 10, where there is a JCT gap close to 0.6 s when the num-
ber of messages is 2 million. However, when the message scale
increases to 10 million, the gap between BPS and Kafka is reduced
to a maximum of about 0.3 s. Similar conclusions are more easily
confirmed in the polyline charts of figures 9 and 10. Both Produce
and Fetch JCT show a significant increase as the message scale
increases. What we need to pay attention to is that in the two

Fig. 11. Comparison of producer’s throughput between BPS and Kafka with
increasing message number.

Fig. 12. Comparison of consumer’s throughput between BPS and Kafka with
increasing message number.

polyline charts, the corresponding polylines of BPS and Kafka
gradually converge as the message scale increases. In the polyline
graph of Fig. 9, it can even be observed that the last two polylines
almost intersect at the same point-around 26 s. All in all, BPS
can achieve a stable and tolerable authentication overhead, with
an extra maximum proportion of 7% and minimum proportion of
0.19% of Kafka.

We find that the Producer’s JCT is generally higher than the
Consumer’s, which is due to more frequent and strict security
certificate as well as the different batch size between Produce
and Fetch operations. First, compared to consumers inside the
edge cloud (usually stream processing systems), BPS external
producers (e.g. IoT applications) are owned by various untrusted
tenants. Therefore, they require more frequent and strict security
authentication, such as access control and incentive mechanism.
Second, the default batch size for the Produce operation adopted
by BPS and Kafka is much smaller than that of the Fetch operation.
We take full advantage of high EoS transaction throughput and
cache the hot ACL entries in local broker nodes to reduce the
extra verification overhead. As the message scale increases, the
additional security certification overhead gap between BPS and
Kafka gradually shrinks.

5.5. Throughput analysis

Figs. 11 and 12 illustrate the comparison of the producer
and consumer’s throughput when using BPS and Kafka under
increasing message numbers. We can find that BPS can achieve
almost the same throughput as Kafka with little overhead. To be
more specific, the throughput of BPS can achieve 93% of Kafka
when the message number is 2 million, and can achieve 99.4%
of Kafka when message number reaches 10 million. Under the
same increasing number of messages, the produce operation still
performs better than the fetch operation in terms of throughput.
From the polyline chart, we can see that the change trends of
the two are almost the same, which shows that the additional
overhead of BPS is relatively stable, has good robustness. Also,
the throughput growth trend of producers tends to ease after the
message number of 8 million. We will give a specific analysis as
follows.



B. Huang, R. Zhang, Z. Lu et al. / Journal of Parallel and Distributed Computing 143 (2020) 167–178 177

First of all, we can clearly find that the throughput of the
fetch operation is significantly larger than the produce operation,
which is due to its pull-based model. In our scheme, we designed
to enable broker nodes to return messages in batches. This mode
makes the throughput relatively large. In addition, in our scheme
we designed and introduced blockchain-based access control, on-
chain TopicOper-based monitoring, data integrity verification and
the incentive mechanism, which will inevitably become a non-
negligible overhead when the amount of messages is small. But as
the amount of messages increases, thanks to the batched-actions
committing we proposed and the high transaction throughput of
EoS blockchain, the throughput gap between BPS and Kafka has
been significantly reduced.

6. Conclusion & future work

To accommodate the demand for confidentiality and relia-
bility in untrusted multi-tenant edge cloud, this paper presents
BPS, a blockchain-enhanced, reliable, and efficient architecture
for general topic-based broker-enabled pub/sub communication
model. We first analyze and identify the safety bottleneck in-
cluding unauthorized access or tampering with critical privacy-
sensitive metadata induced by the centralized schemes in tra-
ditional pub/sub systems. Inspired by the prevalent blockchain
enhanced paradigm, we attempt to employ the attractive on-
chain properties of decentralization, traceability, and immutabil-
ity to redesign the security mechanism of the broker-enabled
pub/sub system model. Specifically, BPS gives a new trusted data
structure TopicOper which is recorded in blockchain for forward
traceability and history misbehaviors detection. A smart contract-
enabled fine-grained access control via on-chain ACL is leveraged
to ensure reliable and tamper-resistant authorization for topic
operations, while a reputation-based incentive mechanism is pro-
posed to punish potential malicious clients owned by untrusted
tenants. To scale up BPS brokers, we provide a hybrid storage
scheme with on-chain key metadata and off-chain raw topic
messages. Regarding data integrity, Merkle Hash Tree (MHT) is
exploited to verify on-chain metadata while on-chain hashes are
utilized to authenticate off-chain raw data. Furthermore, batched-
actions committing and caching policy are employed to minimize
performance overhead. We implement BPS prototype based on
Kafka and EoS blockchain. The security analysis and extensive
experiments compared with original state-of-the-art Kafka show
that BPS is suitable in practice.

In our future work, we may extend BPS to support larger-
scale and more complex deployments in edge cloud as well as
verify and improve the scalability of BPS. Considering the differ-
entiated characteristics and security needs of various upstream
edge applications, we will further explore deadline-aware and
security-adaptive pub/sub model based on BPS to bridge the gap
between edge application-level (security & performance) goals
and service-level optimization.

CRediT authorship contribution statement

Bobo Huang: Resources, Project administration, Writing -
original draft, Supervision. Rui Zhang: Conceptualization, Method-
ology, Writing - original draft, Software. Zhihui Lu: Data curation,
Writing - review & editing, Supervision, Funding acquisition.
Yiming Zhang: Investigation, Formal analysis, Writing - original
draft, Validation. Jie Wu: Writing - review & editing, Supervision.
Lu Zhan: Data curation, Visualization, Writing - review & editing.
Patrick C.K. Hung: Visualization, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We would like to thank the anonymous reviewers for their
insightful comments and suggestions. The work of this paper is
supported by National Key Research and Development Program
of China (2019YFB1405000), National Natural Science Founda-
tion of China under Grant (No. 61873309, No. 61572137, and
No. 61728202), and Shanghai Science and Technology Innovation
Action Plan Project under Grant (No. 19510710500, No.18510760
200, and No. 18510732000).

References

[1] Amazon, Amazon serverless data processing, 2019, https://cloud.google.
com/pubsub/.

[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D.
Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou, M.
Vukolić, S.W. Cocco, J. Yellick, Hyperledger fabric: A distributed operating
system for permissioned blockchains, in: Proceedings of the Thirteenth
EuroSys Conference, in: EuroSys ’18, Association for Computing Machinery,
New York, NY, USA, 2018, http://dx.doi.org/10.1145/3190508.3190538.

[3] P. Anusree, S. Sreedhar, A security framework for brokerless publish
subscribe system using identity based signcryption, in: 2015 International
Conference on Circuits, Power and Computing Technologies [ICCPCT-2015],
IEEE, 2015, pp. 1–5.

[4] Apache, Pulsar: distributed pub-sub messaging system, 2019, https://
pulsar.apache.org/.

[5] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J.A. Kroll, E.W. Felten, Mixcoin:
Anonymity for bitcoin with accountable mixes, in: International Conference
on Financial Cryptography and Data Security, Springer, 2014, pp. 486–504.

[6] H. Cao, R. Li, W. Tian, Z. Xu, W. Xiao, Blockchain-based accountability for
multi-party oblivious ram, J. Parallel Distrib. Comput. 137 (2020) 224–237.

[7] J. Chen, S. Yao, Q. Yuan, K. He, S. Ji, R. Du, Certchain: Public and
efficient certificate audit based on blockchain for tls connections, in: IEEE
INFOCOM 2018-IEEE Conference on Computer Communications, IEEE, 2018,
pp. 2060–2068.

[8] X. Chen, Z. Zhao, C. Wu, M. Bennis, H. Liu, Y. Ji, H. Zhang, Multi-
tenant cross-slice resource orchestration: A deep reinforcement learning
approach, IEEE J. Sel. Areas Commun. 37 (10) (2019) 2377–2392.

[9] M. Conti, M. Hassan, C. Lal, Blockauth: Blockchain based distributed
producer authentication in icn, Comput. Netw. 164 (2019) 106888.

[10] H.-N. Dai, Z. Zheng, Y. Zhang, Blockchain for internet of things: A survey,
IEEE Internet Things J. 6 (5) (2019) 8076–8094.

[11] DanielLarimer, Eosio, blockchain software architecture, 2020, https://eos.
io/.

[12] J. Daubert, M. Fischer, T. Grube, S. Schiffner, P. Kikiras, M. Mühlhäuser,
Anonpubsub: Anonymous publish-subscribe overlays, Comput. Commun.
76 (2016) 42–53.

[13] P. Dobbelaere, K.S. Esmaili, Kafka versus rabbitmq: A comparative study of
two industry reference publish/subscribe implementations: Industry Paper,
in: Proceedings of the 11th ACM International Conference on Distributed
and Event-Based Systems, 2017, pp. 227–238.

[14] A. Dorri, S.S. Kanhere, R. Jurdak, P. Gauravaram, Lsb: A lightweight scalable
blockchain for iot security and anonymity, J. Parallel Distrib. Comput. 134
(2019) 180–197.

[15] M. El-Hindi, M. Heyden, C. Binnig, R. Ramamurthy, A. Arasu, D. Kossmann,
Blockchaindb-towards a shared database on blockchains, in: Proceedings
of the 2019 International Conference on Management of Data, 2019,
pp. 1905–1908.

[16] H.M. Elkamchouchi, E. Elkheir, Y. Abouelseoud, A pairing-free identity
based tripartite signcryption scheme, Int. J. Cryptogr. Inf. Secur. (IJCIS) 3
(4) (2013).

[17] I. Eyal, A.E. Gencer, E.G. Sirer, R. Van Renesse, Bitcoin-ng: A scalable
blockchain protocol, in: 13th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 16), 2016, pp. 45–59.

[18] Google, Google cloud pub/sub, 2019, https://cloud.google.com/pubsub/.
[19] A. Hari, M. Kodialam, T. Lakshman, ACCEL: Accelerating the bitcoin

blockchain for high-throughput, low-latency applications, in: IEEE INFO-
COM 2019-IEEE Conference on Computer Communications, IEEE, 2019,
pp. 2368–2376.

https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
http://dx.doi.org/10.1145/3190508.3190538
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb3
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb3
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb3
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb3
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb3
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb3
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb3
https://pulsar.apache.org/
https://pulsar.apache.org/
https://pulsar.apache.org/
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb5
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb5
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb5
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb5
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb5
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb6
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb6
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb6
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb7
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb7
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb7
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb7
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb7
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb7
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb7
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb8
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb8
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb8
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb8
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb8
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb9
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb9
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb9
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb10
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb10
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb10
https://eos.io/
https://eos.io/
https://eos.io/
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb12
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb12
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb12
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb12
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb12
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb14
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb14
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb14
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb14
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb14
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb16
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb16
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb16
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb16
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb16
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb17
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb17
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb17
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb17
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb17
https://cloud.google.com/pubsub/
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb19
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb19
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb19
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb19
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb19
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb19
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb19


178 B. Huang, R. Zhang, Z. Lu et al. / Journal of Parallel and Distributed Computing 143 (2020) 167–178

[20] B. Huang, L. Jin, Z. Lu, X. Zhou, J. Wu, Q. Tang, P.C. Hung, Bor: Toward high-
performance permissioned blockchain in RDMA-enabled network, IEEE
Trans. Serv. Comput. (2019).

[21] IBM, IBM cloud functions, 2019, https://www.ibm.com/cloud/functions.
[22] M. Ion, G. Russello, B. Crispo, Design and implementation of a confiden-

tiality and access control solution for publish/subscribe systems, Comput.
Netw. 56 (7) (2012) 2014–2037.

[23] M. Javed, X. Lu, D.K. Panda, Characterization of big data stream processing
pipeline: a case study using Flink and Kafka, in: Proceedings of the Fourth
IEEE/ACM International Conference on Big Data Computing, Applications
and Technologies, 2017, pp. 1–10.

[24] J. Koshy, Kafka ecosystem at linkedin, 2019, https://engineering.linkedin.
com/blog/2016/04/kafka-ecosystem-at-linkedin.

[25] J. Kreps, N. Narkhede, J. Rao, et al., Kafka: A distributed messaging system
for log processing, in: Proceedings of the NetDB, Vol. 11, 2011, pp. 1–7.

[26] M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J.-N. Liu, Y. Xiang,
R.H. Deng, Crowdbc: A blockchain-based decentralized framework for
crowdsourcing, IEEE Trans. Parallel Distrib. Syst. 30 (6) (2018) 1251–1266.

[27] Z. Lu, N. Wang, J. Wu, M. Qiu, Iotdem: An iot big data-oriented mapreduce
performance prediction extended model in multiple edge clouds, J. Parallel
Distrib. Comput. 118 (2018) 316–327.

[28] P. Lv, L. Wang, H. Zhu, W. Deng, L. Gu, An iot-oriented privacy-
preserving publish/subscribe model over blockchains, IEEE Access 7 (2019)
41309–41314.

[29] B. Maithily, Y. Swathi, Securing broker-less publish/subscribe system using
fuzzy identity-based encryption, Int. J. Comput. Sci. Inf. Technol. 6 (3)
(2015) 2823–2826.

[30] V.D. Malpure, P. Deshmukh, Provide security for broker-less content based
publish system using pairing based cryptography, Int. J. Eng. Develop. Res.
4 (2) (2016) 1932–1938.

[31] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, Technical
Report, Manubot, 2019.

[32] S. Nathan, C. Govindarajan, A. Saraf, M. Sethi, P. Jayachandran, Blockchain
meets database: design and implementation of a blockchain relational
database, Proc. VLDB Endow. 12 (11) (2019) 1539–1552.

[33] Pivotal, Rabbitmq, 2019, https://www.rabbitmq.com/.
[34] S. Shitole, A. Gujar, Securing broker-less publisher/subscriber systems using

cryptographic technique, in: 2016 International Conference on Computing
Communication Control and Automation (ICCUBEA), IEEE, 2016, pp. 1–6.

[35] S.-F. Sun, M.H. Au, J.K. Liu, T.H. Yuen, Ringct 2.0: A compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency
monero, in: European Symposium on Research in Computer Security,
Springer, 2017, pp. 456–474.

[36] M.A. Tariq, B. Koldehofe, A. Altaweel, K. Rothermel, Providing basic security
mechanisms in broker-less publish/subscribe systems, in: Proceedings of
the Fourth ACM International Conference on Distributed Event-Based
Systems, 2010, pp. 38–49.

[37] M.A. Tariq, B. Koldehofe, K. Rothermel, Securing broker-less pub-
lish/subscribe systems using identity-based encryption, IEEE Trans. Parallel
Distrib. Syst. 25 (2) (2013) 518–528.

[38] A.V. Terkhedkar, M.A. Shah, Providing security mechanisms in broker-less
publish/subscribe systems using hierarchical identity based encryption,
in: 2016 IEEE International Conference on Recent Trends in Electron-
ics, Information & Communication Technology (RTEICT), IEEE, 2016,
pp. 641–645.

[39] S. Wang, T.T.A. Dinh, Q. Lin, Z. Xie, M. Zhang, Q. Cai, G. Chen, B.C. Ooi,
P. Ruan, Forkbase: An efficient storage engine for blockchain and forkable
applications, Proc. VLDB Endow. 11 (10) (2018) 1137–1150.

[40] G. Wood, et al., Ethereum: A secure decentralised generalised transaction
ledger, in: Ethereum Project Yellow Paper, Vol. 151, 2014, pp. 1–32.

[41] S. Xie, Z. Zheng, W. Chen, J. Wu, H.-N. Dai, M. Imran, Blockchain for cloud
exchange: A survey, Comput. Electr. Eng. 81 (2020) 106526.

[42] C. Xu, K. Wang, P. Li, S. Guo, J. Luo, B. Ye, M. Guo, Making big data open in
edges: A resource-efficient blockchain-based approach, IEEE Trans. Parallel
Distrib. Syst. 30 (4) (2018) 870–882.

[43] K. Yang, K. Zhang, X. Jia, M.A. Hasan, X.S. Shen, Privacy-preserving
attribute-keyword based data publish-subscribe service on cloud platforms,
Inform. Sci. 387 (2017) 116–131.

[44] ZeroMQ, Zeromq, an open-source universal messaging library, 2019, http:
//zeromq.org/.

[45] C. Zhang, C. Xu, J. Xu, Y. Tang, B. Choi, Gemˆ 2-tree: A gas-efficient
structure for authenticated range queries in blockchain, in: 2019 IEEE
35th International Conference on Data Engineering (ICDE), IEEE, 2019,
pp. 842–853.

[46] Y. Zhao, Y. Li, Q. Mu, B. Yang, Y. Yu, Secure pub-sub: Blockchain-based fair
payment with reputation for reliable cyber physical systems, IEEE Access
6 (2018) 12295–12303.

[47] Y. Zhao, Y. Liu, A. Tian, Y. Yu, X. Du, Blockchain based privacy-preserving
software updates with proof-of-delivery for internet of things, J. Parallel
Distrib. Comput. 132 (2019) 141–149.

[48] P. Zheng, Z. Zheng, H.-n. Dai, Xblock-eth: extracting and exploring
blockchain data from etherem, 2019, arXiv preprint arXiv:1911.00169.

Bobo Huang is a PH.D. student at School of Computer
Science, Fudan University. His research interests are
cloud computing, distributed system, data center net-
works, big data system, Blockchain distributed system,
network functions virtualization, network management
driven by Big Data.

Rui Zhang is a master student at School of Com-
puter Science, Fudan University. His research interests
are computer network, cloud computing, Blockchain
distributed system, IoT and big data analysis system.

Zhihui Lu is a Professor in School of science de-
gree IEEE and committee. Computer Science, Fudan
University. He received a Ph.D computer from Fudan
University in 2004, and he is a member of the China
computer federation’s service computing specialized
committee. His research interests are cloud computing
and service computing technology, big data archi-
tecture, edge computing, and Blockchain distributed
system.

Yiming Zhang is a master student at School of
Computer Science, Fudan University. His research in-
terests are networking, distributed system, data center
networks, cloud computing, network architecture.

Jie Wu is a Professor at School of Computer Science,
Fudan University. His research interests are Internet
technology, big data architecture, edge computing,
cloud computing, Blockchain distributed system, he
received a Ph.D computer science degree from Fudan
University in 2008.

Lu Zhan is an assistant professor at School of Eco-
nomics, Fudan University. Her research interests are
Economics Big data, Blockchain in Economics.

Patrick C.K. Hung is a Professor at the Faculty of
Business and Information Technology in University
of Ontario Institute of Technology. Patrick has been
working with Boeing Research and Technology in
Seattle, Washington on aviation services-related re-
search projects. His research interests include services
computing, cloud computing, big data, edge computing.

http://refhub.elsevier.com/S0743-7315(20)30284-7/sb20
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb20
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb20
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb20
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb20
https://www.ibm.com/cloud/functions
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb22
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb22
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb22
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb22
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb22
https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb26
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb26
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb26
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb26
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb26
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb27
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb27
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb27
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb27
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb27
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb28
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb28
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb28
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb28
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb28
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb29
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb29
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb29
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb29
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb29
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb30
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb30
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb30
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb30
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb30
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb31
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb31
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb31
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb32
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb32
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb32
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb32
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb32
https://www.rabbitmq.com/
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb34
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb34
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb34
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb34
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb34
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb35
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb35
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb35
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb35
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb35
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb35
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb35
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb37
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb37
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb37
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb37
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb37
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb38
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb38
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb38
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb38
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb38
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb38
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb38
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb38
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb38
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb39
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb39
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb39
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb39
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb39
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb40
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb40
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb40
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb41
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb41
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb41
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb42
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb42
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb42
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb42
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb42
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb43
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb43
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb43
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb43
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb43
http://zeromq.org/
http://zeromq.org/
http://zeromq.org/
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb45
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb45
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb45
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb45
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb45
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb45
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb45
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb46
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb46
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb46
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb46
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb46
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb47
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb47
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb47
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb47
http://refhub.elsevier.com/S0743-7315(20)30284-7/sb47
http://arxiv.org/abs/1911.00169

	BPS: A reliable and efficient pub/sub communication model with blockchain-enhanced paradigm in multi-tenant edge cloud
	Introduction
	Related work & threat model
	Topic-based and broker-enabled pub/sub systems
	Shared pub/sub model in multi-tenant edge cloud
	Security for pub/sub systems

	Blockchain technology
	Blockchain enhanced paradigm
	Characteristics on blockchain for BPS

	Threat model

	Overview
	Design goals
	BPS architecture: Blockchain-enhanced pub/sub model

	BPS design and implementation
	Malicious behavior detection
	Data integrity verification
	Blockchain-enhanced access control
	Incentive mechanism
	Batched-actions committing

	Evaluation
	Security analysis
	Experiment setup
	Auth time analysis
	Job completion time analysis
	Throughput analysis

	Conclusion & future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


